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Abstract

Post-hoc explainability methods like LIME and SHAP
are frequently used to explain predictions of complex black-
box machine learning models like neural networks and
model ensembles. However, these explainers are only ap-
proximations, which is an issue in high-risk fields like fi-
nance, medicine, and policy, where more exact interpreta-
tions are preferred and necessary. This work aims to gauge
the fidelity, or faithfulness, that LIME and SHAP have to the
internal decision processes of the model. To do so, we utilize
inherently interpretable models to obtain exact interpreta-
tions, comparing them to the approximations generated by
LIME and SHAP. We experiment with a wide variety of dif-
ferent real-world datasets, models, and model complexities
to finally assess the fidelity of LIME and SHAP.

This work shows that LIME and SHAP do not provide
reliable and consistently faithful explanations. We demon-
strate that LIME and SHAP’s fidelity varies widely between
datasets and models, and rapidly decreases with increasing
model complexity. This work further reinforces the need to
use inherently interpretable models that provide exact and
consistent interpretations that can be relied upon.

1. Introduction

Machine learning (ML) is a constantly developing field
that is being increasingly used in a wide variety of fields.
However, many of the most commonly used algorithms in
machine learning – from Support Vector Machines (SVM)
to XGBoost to deep neural networks (DNNs) – are black-
box models. These models can contain millions of param-
eters portraying very complex patterns, causing them to be
too complicated to be easily understood by humans. This

is a big problem in high-risk areas, including in finance,
medicine, and law, where a model’s decisions can make sig-
nificant impacts on the lives of human beings.

A very common approach to combat this issue is to
gauge local interpretability, where feature importance, or
the importance of each feature on a prediction, is gauged
based on an individual point. This allows individual predic-
tions to be explained and further understood by researchers.

One approach to local interpretability is perturbation-
based model agnostic post-hoc explainability methods like
LIME and SHAP, where a second model is utilized to ex-
plain a trained model’s individual predictions. These meth-
ods estimate the contribution of each feature to the output by
perturbing the input and observing the model’s response to
the perturbations [18]. With the coefficients/SHAP values
from these explainers, researchers can obtain local explana-
tions of individual model predictions. While these methods
can work for any model, they are mostly used for black box
models like neural networks.

An alternative approach to post-hoc explainability meth-
ods is using inherently interpretable models, which are
models designed in a manner so that exact local interpre-
tations of the model can be obtained. Examples of inher-
ently interpretable models include linear regression mod-
els, GLM, GAM, Decision Trees, EBM [13], and GAMI-
Net [23]. Unlike post-hoc explainability methods, using in-
terpretations of these models guarantees a faithful under-
standing of the model.

Despite the fact that using inherently interpretable mod-
els grants an exact understanding of the model, most re-
searchers decide to utilize black box models and explain
them with post-hoc explainability methods. This is due
to the commonly-held belief that black box models have
greater predictive power, can be more accurate, and can
learn ”hidden patterns” in data [16] [15]. However, inher-
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ently interpretable models have been shown to perform just
as well as black-box models on high risk tasks, while still
remaining completely transparent [4] [3].

Fidelity is an explainer’s faithfulness to the original
model. There are two types of fidelity – external and in-
ternal fidelity [11]. The former concerns fidelity to model
predictions, while the latter concerns fidelity to the internal
decision processes of a model. Since explanations are by
default approximations, they will not be internally faithful
to the original model, making it a bad idea to rely on them
for high-risk applications [15]. Indeed, using single points
to attempt to understand a complex is too optimistic and
naive, and may not reflect the model as a whole [2]. Using
unfaithful explanations to explain a model can be very mis-
leading, causing researchers and users alike to develop false
understanding surrounding a model, potentially resulting in
unethical and costly consequences.

In this paper, we prove the infidelity of perturbation-
based post-hoc explainability methods by directly inves-
tigating and measuring the fidelity of LIME and SHAP
on real-world datasets, in fields ranging from medicine
and biology to physics and finance. We experiment with
models of differing complexities, and also compare local
feature importance interpretations from a range of inher-
ently interpretable models with post-hoc explanations on
the same models to measure the faithfulness of these meth-
ods. Our work shows that the fidelity of LIME and SHAP
to the ground truth of inherently interpretable models varies
widely.

Model development in this paper makes extensive use of
the PiML toolbox [21], an interactive Python toolbox for
interpretable machine learning model development and val-
idation.

2. Background

2.1. Post-hoc Explainability Methods

The most commonly used perturbation-based post-hoc
explainability methods are LIME and SHAP. These meth-
ods solely rely on model inputs and outputs to make infer-
ences about the model itself.

2.1.1 Local Interpretable Model-Agnostic Explana-
tions (LIME) [14]

LIME utilizes an interpretable local surrogate model to ap-
proximate the particular example’s neighborhood. To do
so, perturbations are made surrounding the point of interest,
and black box predictions are made on each of the points.
Each perturbation is weighted on the distance to the point,
and an interpretable model is trained based on the perturbed
dataset. By doing so, the interpretable model can then be
used to explain the original prediction.

For LIME, the explanation for instance x are expressed
as

explanation(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (1)

where f is the original model that is to be explained, g is
the interpretable model (usually linear) used to explain the
prediction, L is the loss. Each pix is the proximity measure
used to set the size of the kernel used to weight the pertur-
bations, and Ω(g) is the model complexity used to penalize
g [14].

2.1.2 SHapley Additive exPlanations (SHAP) [10]

SHAP (SHapley Additive exPlanations) computes the con-
tributions of each feature to the model, creating a linear ad-
ditive feature attribution model.

To do so, SHAP utilizes Shapley values from cooperative
game theory, which are computed as

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})−fS(xS)]

(2)
where S is a subset of F , all features in the model. and

fS∪{i} and fS are models trained with and without feature
i present. [10]

KernelSHAP (SHAP’s model-agnostic method) utilizes
a regression-based method based on LIME to estimate
Shapley values, and specifies the explanation as

g(z′) = ϕ0 +

M∑
i=1

ϕiz
′
i (3)

where g is the explanation model, M is the maximum
coalition size, and z′ ∈ {0, 1}M is a coalition vector used
to specify which features are being used in the coalition.
[10] [12].

2.2. Interpretable Models

In order to fully gauge the fidelity of LIME and SHAP,
we need to utilize models with a wide range of different
decision boundaries. So, we use the following interpretable
models:

2.2.1 ReLU-DNN with Aletheia Unwrapper

Deep neural networks with the Rectified Linear Unit acti-
vation function (ReLU-DNNs) are normally black boxes.
However, they express a piecewise linear function and par-
tition the input space into a finite set of convex activation
regions, each with its own activation pattern.

The Aletheia toolbox includes an unwrapper that can un-
wrap a ReLU-DNN into an equivalent set of local linear
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models based on these activation patterns. Each local linear
model functions exclusively on a disjoint convex sub-region
of the input space. The weights of these local linear models
can then be used to exactly interpret the ReLU-DNN locally,
obtaining the exact partial dependence on each feature [19].

Additionally by imposing a sparsity constraint through
ℓ1 regularization, the number of LLMs making up the
ReLU-DNN can be reduced, thus reducing the complexity
of the model [20]. These simplified models can be easier to
interpret.

3. Related Work

There has been a consensus surrounding the lack of fi-
delity of post-hoc explainability methods, especially after
Cynthia Rudin’s paper highlighting the dangers in relying
upon them for high-stakes decisions [15]. As a result, there
have been numerous works aiming to assess fidelity of a
model. These methods can be categorized into dataset-
based methods and perturbation-based methods.

The first approach to assess fidelity is to construct syn-
thetic datasets which allow for efficient computation of con-
ditional expected values that can be used to evaluate expla-
nations [8]. However, this approach is problematic since
post-hoc explainers are intended to explain the model, not
the data itself. So, one approach to address the issues
with synthetic data generation is SynthGauss [1]. This ap-
proach generates synthetic datasets consisting of clusters
with points sampled from Gaussian distributions. Never-
theless, synthetic data is not necessarily be reflective of real-
world datasets.

A second method to assess model fidelity are
perturbation-based methods. These methods are used when
there is no ground truth available. Examples of such meth-
ods include Prediction Gap on Important Feature Pertur-
bation (PGI) and Prediction Gap on Unimportant Feature
Perturbation (PGU) [1], measuring the difference in pre-
diction accuracy after perturbing important features. Alter-
natively, the TopjSimilarity metric compares the SHAP
values of the original model with the surrogate explanation
model [11]. RemOve And Retrain (ROAR) removes fea-
tures deemed important to each explainer and retrains the
model to gauge fidelity [6]. However, these methods do not
gauge the explainers’ internal fidelity, since they are based
on external perturbation to model inputs.

Obtaining a true measure of fidelity involving internal
fidelity can be problematic, especially when there is no ex-
act ground truth feature ranking available to the model. So,
an ideal approach is to utilize an exact local interpretation
to use as a ground truth for comparison of explainability
methods.

4. Methods
4.1. Approach

Our approach to assess the fidelity of explainability
methods by utilizing the Aletheia toolbox and the exact lo-
cal interpretations that it provides.

LIME, SHAP and our exact interpretations all assign fea-
ture importance values to each individual feature, measur-
ing the contribution it has on a prediction. Ranking these
values from largest to smallest magnitude creates feature
importance rankings that can be compared [7]. Utilizing
exact feature importance rankings from inherent interpre-
tations insures that we are assessing exact internal fidelity,
or how faithful LIME and SHAP are to the exact decision
boundaries of the model. Additionally, this allows us to uti-
lize real-world datasets instead of synthetic ones. We com-
pare feature importance rankings from LIME, KernelSHAP,
and exact interpretations, measuring the agreement of these
rankings.

We use default author implementations for LIME and
KernelSHAP, leaving heuristic definition of hyperparame-
ters for future work.

4.2. Metrics

To measure the agreement between the feature impor-
tance rankings from the ground truth and each explanation,
we utilize both top-k metrics and ranking metrics. A higher
value of these metrics means a higher similarity for the cor-
responding explanation method.

4.2.1 Top-k metrics

Top-k metrics are used to measure the agreement for the k
most important features. We take these metrics from Kr-
ishna et. al [7]. See Figure 1.

Feature Agreement measures the fraction of common
features between the top-k most important features in two
rankings. Rank Agreement, Sign Agreement, and Signed
Rank Agreement measure the fraction of common features
in the top-k features that have the same position, sign, and
both position and sign, respectively, between the two rank-
ings. As such, Signed Rank Agreement is the most strict
metric.

In our experiments, we use k = 5.
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FeatureAgreement(Ea, Eb, k) =
|TopFeatures(Ea, k) ∩ TopFeatures(Eb, k)|

k

RankAgreement(Ea, Eb, k) =
|
⋃

s∈S s ∈ TopFeatures(Ea, k) ∧ s ∈ TopFeatures(Eb, k) ∧ rank(Ea, s) = rank(Eb, s)|
k

SignAgreement(Ea, Eb, k) =
|
⋃

s∈S s ∈ TopFeatures(Ea, k) ∧ s ∈ TopFeatures(Eb, k) ∧ sign(Ea, s) = sign(Eb, s)|
k

SignedRankAgreement(Ea, Eb, k) =
|
⋃

s∈S s∈TopFeatures(Ea,k)∧s∈TopFeatures(Eb,k)∧rank(Ea,s)=rank(Eb,s)∧sign(Ea,s)=sign(Eb,s)|
k

Figure 1. Top-k metric calculations for explanations Ea and Eb. S denotes the set of all features. TopFeatures(E, k) denotes the k top
features of E, rank(E, s) denotes the rank of feature s in E, and sign(E, s) denotes the sign of feature s in E

[7].

4.2.2 Ranking Correlation Metrics

Ranking correlation metrics can be used to compare the rel-
ative ordering of two different feature rankings. However,
it is worth noting that the ordering of the highest-ranking
features is very important information when using explana-
tions to understand a model [7]. So, an ideal correlation
metric should weigh higher ranked features more heavily
than lower ranked ones.

So, we utilize a weighted version of Kendall’s Tau [17]
and Rank-Biased Overlap (RBO) [22]. These weighted
metrics are able to provide a measure of the similarity of
two different rankings, while giving higher-ranked inconsis-
tencies a higher weight than lower-ranked ones. This allows
for a realistic assessment of ranking agreement that can be
directly applicable to human interpretation of explanations.

5. Experiments
5.1. Unwrapped ReLU-DNNs

Our first experiment explores LIME and SHAP’s fidelity
on ReLU deep neural networks with varying complexi-
ties. Neural networks are a very common state-of-the-art
approach to modelling complex data. However, with the
Aletheia unwrapper, we can use ReLU-DNNs as glass-box
models and obtain local interpretations that we can compare
to explanations. [19].

We use ReLU-DNNs that consist of 2 layers of 20 nodes
each. We apply ℓ1 regularizations of varying magnitudes
to regularize the model and control the number of LLMs,
resulting in a set of ReLU-DNNs with varying complexi-
ties. We then train these ReLU-DNNs on the German Credit
dataset [5] for 20 epochs using an Adam optimizer with a
learning rate of 0.001 and a batch size of 256. We sample a
random set of 50 samples from the test set.

As the number of LLMs increases, the model begins to
overfit, as seen in Figure 3. This is because models that
are too complex tend to learn the training data too closely,
including unavoidable noise [24]. Overfitting then causes

test AUC to rapidly fall and train AUC to rapidly increase.
Typically, ReLU-DNNs with a large number of LLMs have
complex decision boundaries that do not generalize well to
the test data.

Next, using the exact local feature importance rankings
obtained from each ReLU-DNN, we calculate similarity
metrics from Section 4.2 to gauge the fidelity of LIME and
SHAP on models of varying complexity, then average the
metrics across the 50 examples.

Our results indicate that model fidelity decreases mono-
tonically at increasing LLM counts (see Figure 2). As the
number of LLMs increases and the decision boundaries be-
come more nonlinear, the approximations given by LIME
and SHAP become less and less consistent with exact re-
sults, on average. In fact, at 634 LLMs, LIME and SHAP
have an average rank agreement of only 0.128 and 0.188, re-
spectively, demonstrating that at most 1 of the top 5 features
of LIME and SHAP agree with the ground truth in terms of
rank.

Also notable is the increase in disagreement between
LIME and SHAP at increasing complexities. While LIME
and SHAP had an average signed rank agreement of 0.820
at 11 LLMs, this deteriorates to only 0.244 at 634 LLMs.
This disagreement is very concerning, especially since there
are no well-established methods that researchers consis-
tently employ to resolve these disagreements [7]. The fact
that neither LIME nor SHAP consistently outperforms the
other across all complexities further exacerbates the issue
with disagreement.

Note that this toy case utilizes a small neural network
with only 2 layers of 20 nodes. ML practitioners typically
use complex black-box neural networks with multiple lay-
ers of more than a hundred nodes (and hundreds of LLMs
as a result), which can obtain very good performance solely
based on accuracy or AUC. However, LIME and SHAP’s
lack of fidelity can become an even bigger problem that can
be very difficult to resolve for these complex models, es-
pecially since exact interpretations will not be available for
black-box models.
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(a) Graph of metrics vs number of LLMs. Metrics tend to monotonically decrease as of
LLMs increases.

(b) 11 LLMs

(c) 305 LLMs

(d) 634 LLMs

Figure 2. Average fidelity metrics for exact interpretation, LIME, and SHAP for varying LLM counts of ReLU-DNN models trained on the
German Credit Dataset. Notice that all metrics decrease at increasing LLM counts, indicative of decreasing fidelity to exact interpretations
and decreasing disagreement between explainability methods.
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Figure 3. Train and Test AUC of the model after 20 epochs vs.
the number of LLMs. As the model becomes more complex, the
train AUC increases. After around 150 LLMs, the gap between
train and test AUC increases, indicating overfitting. Normally, re-
searchers select a complexity that maximizes test AUC while min-
imizing the gap between train and test.

5.2. All Models

Datasets
Dataset Number

of At-
tributes

Number
of Ex-
amples

Task

Abalone 8 4177 Regression
Aquatic Toxicity 9 546 Regression
Bike Sharing 16 17389 Regression
California Housing 9 2640 Regression
Steel Industry 11 35040 Regression
Bank Marketing 17 45211 Classification
Breast Cancer 32 569 Classification
Census Income 14 48842 Classification
German Credit 20 1000 Classification
MAGIC Gamma 11 19020 Classification

Table 1. Datasets used in the experiment. Datasets span fields
ranging from finance, science, medicine, policy, and more.

We train assorted inherently interpretable models on a
range of 5 classification and 5 regression datasets from the
UCI Dataset Repository, a repository of real-world datasets
[5]. The set of inherently interpretable models we use in-
cludes GAM, EBM, and GAMI-Net, and ReLU-DNN (from
last section), spanning a wide range of different decision
boundaries.

For GAM, we use a spline order of 3, number of knots to
20, smoothness to 0.6, and maximum number of iterations
to 100. We set the number of interactions to 10 for EBM and
GAMI-Net. For GAMI-Net, we set the size of the subnets
for main effects and interactions to 1 and 2 layers of 20

nodes each, respectively. We use the same hyperparameters
for the ReLU-DNN as last section, with 2 layers of 20 nodes
each and an ℓ1 regularization of 8e-4.

We train the models until they converge. We harness
the inherently interpretable nature of these models to ob-
tain ground truth feature importance rankings for 50 ran-
dom samples from the test set. Then, we utilize LIME and
SHAP to obtain post-hoc feature importance rankings for
those same 50 random examples. We compare the explana-
tions to our exact interpretations, allowing for us to gauge
the local fidelity of each method.

Our results (Table 3) show that LIME and SHAP have
the highest fidelity when used on ReLU-DNN on almost all
datasets. The explanation methods’ high fidelity on ReLU-
DNNs could be due to the piecewise linear nature of the
decision boundary of ReLU-DNNs, as compared to a more
continuous, smooth one for GAM and GAMI-Net, and a
stepwise one for EBM [19] [9] [23].

The fidelity of LIME and SHAP largely depends on the
model and dataset used. Notice that the fidelity varies
widely for specific models across datasets. For example,
LIME and SHAP both do the best job describing GAMI-Net
for the Census dataset (Kendall’s Weighted Tau of 0.713
and 0.762), yet do comparatively worse for the German
Credit dataset (Kendall’s Weighted Tau of 0.387 and 0.338).
Additionally, neither LIME nor SHAP consistently outper-
forms the other in fidelity across datasets and models. This
is another example of the disagreement problem, showing
that it is never fully correct to rely on a single explanation
method for a certain scenario [7].

Without access to exact interpretations, there would be
no concrete way to gauge whether LIME or SHAP would
be faithful to an particular black box model trained on a par-
ticular real-world dataset. However, this work demonstrates
that less complex, piecewise linear models like small ReLU
deep neural networks may be a good choice should utilizing
a black-box model be inevitable.

6. Conclusion
In high-risk applications, it is vital for post-hoc explain-

ability methods to grant faithful explanations. An inconsis-
tent or non-exact explanation can mislead researchers and
clients, leading to costly and unethical consequences, re-
ducing trust in the explanation and subsequently the model
itself [15]. As such, it is important to utilize explanations
that one can rely upon to be accurate and consistent.

The inconsistency of LIME and SHAP shown in this pa-
per prove that they should not be relied upon to explain de-
cisions of complex black-box models for high risk appli-
cations, where decisions are very important. The perfor-
mance of LIME and SHAP heavily depends on the dataset
and model used. It also depends on model complexity, with
more complex models facing a rapid decay in fidelity. The
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Weighted Kendall’s Tau (LIME)
GAM EBM GAMI-

Net
ReLU-
DNN

Abalone 0.431 0.398 0.563 0.827
Bike Sharing 0.266 0.544 0.454 0.864
Aquatic Toxicity -0.041 0.281 0.395 0.998
California Housing 0.384 0.456 0.621 0.872
Steel Industry 0.583 0.712 0.709 0.755
Bank Marketing 0.305 0.535 0.709 0.77
Breast Cancer N/A 0.501 N/A 0.785
Census 0.35 0.62 0.713 0.56
German Credit 0.344 0.532 0.387 0.867
MAGIC Gamma 0.273 0.272 0.461 0.654

Weighted Kendall’s Tau (KernelSHAP)
GAM EBM GAMI-

Net
ReLU-
DNN

Abalone 0.427 0.48 0.673 0.808
Bike Sharing 0.34 0.729 0.643 0.865
Aquatic Toxicity -0.01 0.747 0.7 0.963
California Housing 0.385 0.646 0.788 0.792
Steel Industry 0.768 0.871 0.888 0.913
Bank Marketing 0.48 0.813 0.692 0.784
Breast Cancer N/A 0.615 N/A 0.639
Census 0.283 0.663 0.762 0.535
German Credit 0.444 0.789 0.338 0.865
MAGIC Gamma 0.544 0.648 0.729 0.689

Table 2. Weighted Kendall’s Tau Rank Correlation for LIME and SHAP with Exact Interpretation. Weighted Kendall’s Tau ranges from
-1 to 1. N/A indicates model did not converge. LIME and SHAP tend to be most faithful when used to interpret a ReLU-DNN. Variances
vary from 9.21e-5 to 0.34.

RBO (LIME)
GAM EBM GAMI-

Net
ReLU-
DNN

Abalone 0.809 0.728 0.865 0.827
Bike Sharing 0.688 0.809 0.778 0.959
Aquatic Toxicity 0.598 0.707 0.793 0.995
California Housing 0.747 0.762 0.857 0.93
Steel Industry 0.764 0.768 0.879 0.953
Bank Marketing 0.707 0.81 0.759 0.885
Breast Cancer N/A 0.746 N/A 0.933
Census 0.648 0.821 0.841 0.813
German Credit 0.678 0.788 0.797 0.937
Magic Gamma 0.605 0.704 0.776 0.829

RBO (KernelSHAP)
GAM EBM GAMI-

Net
ReLU-
DNN

Abalone 0.801 0.741 0.899 0.819
Bike Sharing 0.774 0.909 0.872 0.935
Aquatic Toxicity 0.585 0.904 0.89 0.972
California Housing 0.75 0.808 0.922 0.929
Steel Industry 0.754 0.824 0.929 0.966
Bank Marketing 0.749 0.875 0.94 0.844
Breast Cancer N/A 0.794 N/A 0.866
Census 0.662 0.84 0.876 0.807
German Credit 0.717 0.899 0.793 0.936
Magic Gamma 0.699 0.858 0.899 0.808

Table 3. RBO Rank Correlation for LIME and SHAP with Exact Interpretation. RBO ranges from 0 to 1. N/A indicates model did not
converge. LIME and SHAP tend to be most faithful when used to interpret a ReLU-DNN. Variances vary from 6.58e-4 to 0.0395.

presence of these numerous factors demonstrates that these
approximation-based methods should not be trusted to ex-
actly explain predictions after a model is trained.

A more reliable approach to interpreting models is to use
glass-box inherently interpretable models. These models
can not only obtain a satisfactory accuracy/AUC, but also
are able to generate an exact feature importance ranking
that can be treated as the ground truth, removing all approx-
imations and guesswork involved. Researchers can utilize
these exact interpretations to further validate and improve
the model through incorporation of business intuition and
additional knowledge.

Furthermore, our work further reinforces the fact that the
simpler the model, the higher the interpretability. There-
fore, a future direction of work should be to create simple,
easy to interpret models that can achieve optimal perfor-
mance comparable to state-of-the-art black-box models.
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