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Abstract

Training deep learning models on imbalanced data sets
is difficult in practice because models tend to be biased to-
wards predicting the majority class [21]. This poses a par-
ticular challenge in the medical field, not only because the
minority class may often be a disease we are trying to di-
agnose, but also because of the high risk nature of medical
artificial intelligence (AI). In this paper we propose to re-
balance imbalanced datasets by oversampling using Gener-
ative Adversarial Networks (GANs) [11]. We intentionally
create an imbalanced dataset consisting of chest x-ray im-
ages labeled normal or pneumonia, with pneumonia images
being the minority class. In particular, we consider Con-
ditional Deep Convolutional Generative Adversarial Net-
works (cDCGANs), Deep Convolutional Generative Adver-
sarial Networks (DCGANs) [26] conditioned on class la-
bels [23]. For cDCGANs, we propose a new parameter α
that indicates the probability of a randomly generated class
label of 0. We then use these GANs to generate new syn-
thetic pneumonia images. We train a ResNet18 model [15]
on the new rebalanced datasets and compare their results to
baseline, as well as some more common machine learning
methods like undersampling, oversampling, class weights,
and compare precision, recall/sensitivity, specificity, and
the F1 score.

Our results show that DCGAN and cDCGAN-based
oversampling methods can outperform class weights and
classic resampling methods in terms of F1 score, and out-
perform the baseline across the board, making GANs a
valid method to rebalance datasets. Additionally, we found
that our proposed α hyperparameter can potentially be
used to tweak the sensitivity and specificity of the ResNet18
model.

1. Introduction

Use of artificial intelligence (AI) in the medical field is
becoming increasingly popular. However, it is frequently
the case that in many medical image datasets, healthy pa-
tient data tends to have higher prevalence, while diseased
data is rare. As a result, models trained on imbalanced
data can often become biased, resulting in high false neg-
ative rates [33]. This can lead to medical conditions being
left undetected, which leads to negative real world conse-
quences, causing models to be less reliable. It is thus im-
portant to improve the model’s performance despite the im-
balance. Go-to approaches to deal with imbalanced datasets
include oversampling, undersampling, class weighting and
SMOTE [3]. However, these approaches can cause overfit-
ting and may not be directly applicable for medical image
datasets.

One method to improve the model’s performance and re-
duce bias involves data augmentation [29] to create more
samples of the minority class. However, this data augmen-
tation takes the form of image flipping, rotation, scaling,
and others, which still involve the same image.

We propose to train Generative Adversarial Networks
(GANs) [11] on the minority class in order to generate di-
verse assorted minority class examples as a data augmenta-
tion step.

The GANs are trained on 128 × 128 grayscale chest X-
rays. Then, the generator is saved and used to take a random
noise vector as input and generate synthetic chest x-ray im-
ages as output. After using the synthetic chest x-ray images
to rebalance the dataset, we compare these different meth-
ods with a ResNet18 [15] model. This model takes chest
x-ray images as input, then performs binary classification,
outputting whether each chest x-ray is healthy or has pneu-
monia.
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2. Related Work
There are two main approaches when dealing with im-

balanced datasets — modifying the loss function or modi-
fying the dataset itself.

A very common method for modifying the loss function
is class weighting of the loss function [19]. These weights
are calculated by

wj =
n

c · nj

where w are the class weights, n is the total number of sam-
ples, nj is the number of samples of class j, and c is the
total number of classes. In a binary classification task, the
binary cross entropy loss can then be given by

L =
1

N

N∑
i=1

−w0(yi · log ŷi)− w1((1− yi) · log (1− ŷi))

This weighting can cause the minority class to have a bigger
class weight than the majority class and thus a bigger impact
on the loss function, compensating for the lack of instances
of the minority class.

Cost sensitive learning is a generalization of class
weights based approach— each misclassification is as-
signed a different cost based on a cost matrix [18]. For
example, the cost of a false negative may be higher than
that of false positive. One weakness of this method is that it
might take a lot of effort to find a good cost matrix.

Another technique, Label-Distribution-Aware Margin
loss (LDAM), proposed in [5], is similar to class weights
and cost sensitive learning [18] in that a single example
training loss depends on the label of the training example
and how it is classified by the model. LDAM is a specially
constructed loss function that is designed to maximize the
margins from the minority class examples to the decision
boundary, allowing to focus on minority examples close to
the decision boundary that are prone to misclassification.

A frequent approach taken to modify the dataset is over-
sampling of the dataset via image data augmentation [29],
which is a technique that is utilized in many state-of-the-art
applications to generate more data at training time. This can
involve height and width translations to encourage transla-
tion invariance for model predictions, and rotations for ro-
tational invariance. Cropping is used to encourage model to
learn to classify correctly even when looking at only a part
of the image. The advantage of such a technique is that it
is easy to generate lots of new training images. However in
the medical context, a disadvantage is that data augmenta-
tion still preserves the overall structure of each individual
medical image. This may prove to be an obstacle if there
is a small number of patients, as augmentation may not be
able to make the model robust to different manifestations of
the disease.

SMOTE [3] and SMOTE-like methods like BorderlineS-
MOTE [12] and ADASYN [14] are common machine learn-
ing methods that oversample the minority class by gener-
ating synthetic data. In SMOTE methods, to oversample
based on a minority class example x, we consider the k
nearest minority class neighbors (where k is a hyperparam-
eter), take a random such neighbor x′, and generate a ran-
dom synthetic example from the line segment connecting x
and x′ by randomly choosing a point on the segment. We
continue oversampling via this process for random x until
we sample enough synthetic examples as needed. Border-
lineSMOTE and ADASYN are modifications of SMOTE
where only a subset of the minority examples x are sampled,
namely samples on the borderline and samples according to
a density distribution, respectively. While SMOTE-based
methods may be useful for numerical data, it is not practi-
cal for image purposes, since individually generating each
pixel will not result in visually useful images.

Generating synthetic minority class examples with
GANs is a relatively new problem [27]. The advantage
of the GAN approach compared to simple oversampling
or slightly more involved methods like SMOTE [3], is that
GANs are desirable for their ability to represent complex
data and generate realistic synthetic images from a train-
ing dataset. This means that GANs can theoretically help
convert a scarce, discrete training dataset into a better, con-
tinuous dataset via nonlinear interpolation [27]. This can
be incredibly desirable for our medical purposes, where the
features in a chest x-ray indicative of pneumonia can be in-
terpolated into many different variations that may not be
sufficiently represented in our dataset.

CTGAN [32] was designed as a way to model tabular
data with a mix of discrete and continuous columns. It
uses a conditional generator to learn complex distributions
in columns. CTGAN also is able to generate synthetic data
with a specific discrete value. However, our approach con-
cerns image data, a very different form of data.

Since there are naturally not many instances of the mi-
nority class in image datasets, it may not practical to train
a GAN with such a small amount of images. Balancing
GAN (BAGAN) [22] addresses this fact by training on the
whole dataset instead, then applying class conditioning for
the generation of minority class images. BAGAN seeks to
generate images that represent the minority class, are not
repetitive, and are not already found in the training set. It
uses an autoencoder based initialization strategy to help the
model learn class-conditioning in the latent space.

Our approach explores oversampling the training dataset
with a Conditional Deep Convolutional Generative Ad-
versarial Network (cDCGAN) [26] [23] [4]. This deep-
learning-based approach should be theoretically more ad-
vantageous over the more traditional class weighting and
augmentation approaches due to the new and unique im-
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ages generated. We train on the entire dataset, similar to the
approach of BAGAN. However, while BAGAN generates
latent vectors with a class-conditional latent vector gener-
ator to feed into the generator, we feed in the true labels
along with randomly generated latent vectors into the gen-
erator. BAGAN’s discriminator predicts the original class
of each latent vector along with whether it was real or fake,
while our approach solely predicts whether it was real or
fake. Additionally, our approach does not use an autoen-
coder based initialization strategy.

3. Dataset
We base our dataset on Kermany et. al’s dataset of pe-

diatric chest x-rays from Guangzhou [17]. In this dataset,
there are 3875 pneumonia images and 1341 normal im-
ages. For our train dataset, we supplement the pneumo-
nia dataset with 3044 healthy chest X-rays from the NIH’s
ChestX-ray8 dataset [31]. We had previously used images
from [7] as a supplement, but had later discovered that the
data was badly curated—in particular there were some CT-
scans mixed in with the X-rays, so this caused us to use the
NIH data instead.

In order to create a data imbalance where normal im-
ages were the majority class, we randomly deleted train-
ing examples from the pneumonia class so that we were left
with 4385 normal examples and 1460 pneumonia examples.
This allows our dataset to have 25% of chest x-rays with
pneumonia and 75% of images that are healthy. Note that
the test dataset is untouched and completely originates from
the pneumonia dataset to provide an unbiased evaluation of
model performance, with 234 normal images and 390 pneu-
monia images. Similarly the validation data we take from
the training set is balanced to provide unbiased evaluation.

(a) Healthy X-ray (b) Pneumonia X-ray

Figure 1. Images from the dataset. Note the presence of white
pixels in a diffuse interstitial pattern indicative of viral pneumonia
in the rightmost x-ray [17].

The image data is converted to grayscale and resized to
128 × 128. Then, to make the model more robust to trans-
lations and rotations, we perform data augmentation in the
form of random horizontal flips, rotations, and cropping.
We also normalize the images to ensure that each image has
a similar distribution of pixel intensities before being fed

into the ResNet18 model.

4. Methods

4.1. Model and Training

We use a Pytorch [24] ResNet18 model [15] based off
of [30], with sigmoid activation for the final layer binary
cross entropy loss. We change the number of nodes in our
fully connected layer to 2 for our binary classification task.
Utilizing deeper, more powerful models like ResNet50 [15]
is prone to overfitting due to our relatively small dataset,
and in preliminary experiments, this was confirmed when a
large gap between train and test accuracy was observed.

As a baseline method, we trained a ResNet18 from
scratch. We use a batch size of 32, and learning rate of
4e-3, with an Adam optimizer [20] with standard decay
rates β1 = 0.9 and β2 = 0.999. We also train for 5 epochs
and save and evaluate only the model with the best valida-
tion accuracy to further prevent overfitting.

4.2. Resampling Methods

The classic methods for dealing with imbalanced
datasets are resampling methods, namely undersampling
and oversampling [27]. Undersampling involves randomly
removing majority class examples, oversampling involves
randomly duplicating minority class examples. The goal
of each method is to make the number of training exam-
ples of each class the same to prevent bias. However,
these methods are not desirable in practice – undersampling
throws away useful data, whereas oversampling may cause
the model to overfit since it duplicates data.

4.3. Generative Adversarial Networks

Generative Adversarial Networks [11] are state-of-the-
art deep learning models that are used to learn the under-
lying distribution of complex data and that can be used to
thus generate photo-realistic images after being trained on
a dataset. These images can then be used to oversample the
training set. The architecture consists of a generator net-
work, whose task is to generate realistic images that fool
the discriminator network, whose task is to distinguish be-
tween real and fake images.

The generator network learns the mapping from random
noise to data space as G(z; θg), where G is a neural net.
Meanwhile the discriminator learns a neural net D(x; θd),
which outputs probability that x actually is real data. Thus
if x is drawn from pdata the discriminator tries to maximize
D(x; θd), equivalent to maximizing logD(x; θd). Gener-
ating a fake example involves sampling z ∼ pz(z) from
noise, then applying G(z; θg). We would like to thus mini-
mize D(G(z; θg); θd), which is thus equivalent to maximiz-
ing log(1 − D(G(z; θg); θd). Putting this all together the
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discriminator networks wants to learn θd to maximize

Ex∼pdata [logD(x; θd)] + Ez∼pz(z)[log(1−D(G(z; θg); θd))]

Now the generator and discriminator are playing a minimax
zero-sum game with each other, so this means that the gen-
erator wants to learn θg to minimize the above expression.
Thus the objective function ends up being

min
θg

max
θd

[Ex∼pdata [logD(x; θd)]

+ Ez∼pz(z)[log(1−D(G(z; θg); θd))]]

4.4. Deep Convolutional GANs

Deep Convolutional Generative Adversarial Networks
(DCGANs) [26] are a class of GANs that use all-
convolutional layers for unsupervised learning. DCGANs
are able to deal with larger and more complex data sets after
modifying convolutional GANs with strided convolution,
batch normalization, ReLU activation, and other architec-
tural constraints. This allows for DCGANs to become more
stable compared to vanilla GANs and learn good represen-
tations of the images for generative modeling.

The discriminator in our DCGAN model consists of 5
convolutional layers of kernel size 5 and stride 2 alternating
with LeakyReLU activation with an alpha of 0.2, which is
then flattened and fed into a 1-node fully connected layer
with sigmoid activation. In the generator, the noise vector
is fed through a fully-connected layer then reshaped into
an (8,8,128) feature map. This is fed through 4 transpose
convolutional layers of kernel size 4 and stride 2 followed
by a single regular convolutional layer of kernel size 5 and
tanh activation [2].

We train this model on the pneumonia images in the
dataset for 160 epochs with a batch size of 128. We use
an Adam optimizer [20] with learning rate 2e−3 and decay
rates β1 = 0.5 and β2 = 0.999. Images were normalized to
[0,1].

Figure 2. Fake Pneumonia X-rays generated by DCGAN. While
they may look realistic, the white cloudiness indicative of pneu-
monia seems quite excessive, especially on the image to the right.
Also notice the artifact on the top left of the rightmost image.

(a) DCGAN-generated images
at epoch 20

(b) DCGAN-generated images
at epoch 60

(c) DCGAN-generated images
at epoch 160.

Figure 3. Images generated during different phases of the train-
ing process by DCGAN. The images start off quite pixelated, but
gradually become more defined and realistic.

The images generated by the DCGAN seen in Figures 2
and 3 seem promising. Most of them bear semblances to
real chest x-rays — however, some seem unrealistic. There
is an excessive cloudiness in many images. While this is a
feature indicative of pneumonia, it is obviously not found
naturally, even to the untrained eye. We inferred that this
is due to the DCGAN being trained on a relatively small
dataset of only pneumonia chest x-rays. As a result, it was
not exposed to healthy chest x-rays, which probably caused
it to have trouble generating realistic pneumonia images.

4.5. Conditional GANs and Conditional Deep Con-
volutional GANs

Conditional GANs (CGANs) [23] are a conditional ver-
sion of GANs which conditions the generator and discrim-
inator on additional information y (usually a label, which
is what our implementation does). This way, the objective
function becomes

min
θg

max
θd

[Ex∼pdata [logD(x|y; θd)]

+ Ez∼pz(z)[log(1−D(G(z|y; θg)|y; θd))]]

The labels y are combined with randomly generated latent
points pz(z) before being fed into the generator. This means
the generator is trying to generate data while incorporat-
ing information y, causing the generated result to be condi-
tioned on y. The discriminator also receives this label in-
formation y, which it uses to help discriminate between real
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Random Noise Encoded Labels

Generator Real Data and Labels

Discriminator

Real/Fake

Figure 4. The overall architecture of a CGAN [23]. Randomly-
generated labels are encoded with an embedding layer and then
concatenated with random noise and fed into the generator. These
encoded labels are also used to train the discriminator, which takes
as input the generated data and encoded labels, as well the real data
and labels, to distinguish between fake and real data.

and fake images that it knows the generator might be gen-
erating based off of y [23]. These CGANs can thus be use-
ful for modeling complex multi-modal data distributions, as
described in [23]. By training on the entire dataset and con-
ditioning on labels, a CGAN should theoretically be able
to learn the differences between healthy and pneumonia x-
rays. This can improve quality of generated images over the
DCGAN approach, which was not exposed to the healthy
chest x-rays.

To modify our DCGAN architecture into a conditional
DCGAN (cDCGAN), we randomly generate labels and pass
them through an embedding layer to encode them into
unique 50-element vectors. Then, these encoded labels are
concatenated with the random latent points generated and
inputted into the DCGAN generator. The encoded labels
are also concatenated with the images in the DCGAN dis-
criminator, as shown in Figure 4 [4].

Since the dataset used to train the cDCGAN is im-
balanced, we explore the process of generation of ran-
dom labels. We compare the default equal probability ap-
proach (cDCGAN) with a weighted approach we propose
(weighted cDCGAN). The default approach used in cDC-
GAN is to generate labels of 0 and 1 equally with 0.5 proba-
bility. Our weighted cDCGAN approach has a hyperparam-
eter α, representing the probability that label 0 (healthy) is
generated. Label 1 will thus have a probability of generation
of (1 − α). The default approach has α = 0.5. However,
this probability is not reflective of the dataset, which con-

(a) A healthy chest x-ray gen-
erated by cDCGAN.

(b) A pneumonia chest x-ray
generated by cDCGAN

Figure 5. Chest X-rays generated by cDCGAN. cDCGAN seems
to be able to learn the general differences between healthy and
pneumonia chest x-rays, as demonstrated in the slight cloudiness
in the right image. The pneumonia image seems less extreme than
the images generated by DCGAN, as a result of the class condi-
tioning and being exposed to the entire dataset.

sists of 75% healthy images and 25% pneumonia images.
By tuning the probability that these random labels are gen-
erated, we can influence the resulting generated images. So,
we experiment with α = 0.25 and α = 0.75.

We train the cDCGAN model on the entire dataset and
labels for 48 epochs with a batch size of 128. We use an
Adam optimizer [20] with learning rate 2e − 3 and decay
rates β1 = 0.5 and β2 = 0.999. We note that cDCGAN
converges in less epochs than DCGAN due to the much big-
ger dataset. Images were normalized to [0,1].

5. Experiments

5.1. Methods and Metrics

We experiment with DCGAN, cDCGAN, and weighted
cDCGAN to generate synthetic minority data to oversample
the minority data. After training each different architecture,
we save the model and then randomly generate latent points
to use the trained generator model to oversample and gen-
erate new pneumonia images, which we then add to the im-
balanced dataset in order to rebalance the dataset to a 50-50
split. A potential advantage of this approach is the ability to
generate unlimited images by repeatedly feeding randomly
generated latent points into the generator, allowing for re-
peated generation.

Our DCGAN implementation is based on [2], found
at (https://www.kaggle.com/code/djibybalde/dcgan-keras-
chest-x-ray-images), and our cDCGAN is inspired by [4],
found at (https://machinelearningmastery.com/how-to-
develop-a-conditional-generative-adversarial-network-
from-scratch/). We adapted the DCGAN code to
add conditionality and the α parameter, and tuned
hyperparameters to get the new model to converge.
Our ResNet18 model is based on [30], found at
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Precision =
TP

TP + FP

Recall/Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

F1 Score =
2 · Precision · Recall
Precision + Recall

Figure 6. Metric calculations. TP, FP, TN, FN denote the number
of true positives, false positives, true negatives, and false nega-
tives, respectively.

(https://www.pluralsight.com/guides/introduction-to-
resnet). We adapted the ResNet18 code to adapt it to binary
classification, to process imbalanced datasets, include
image augmentation and normalization, as well as calculate
metrics and generate heatmaps.

When training the ResNet18 model, we used a batch size
of 32. We experimented with a few learning rates and found
that 4e-3 was the optimal learning rate for the ResNet18
model.

Since we are working with imbalanced data, we do not
focus on accuracy for our main metric. Instead, we use
metrics like precision and recall, sensitivity and specificity
(which are important in the medical context particularly)
and F1 score (to measure general model performance). The
metrics were computed with the help of scikit-learn library
[25].

5.2. Results

Since our dataset is imbalanced, training from scratch
can easily lead to bias. We compare training from scratch
and training with pre-trained weights on ImageNet [8] from
the PyTorch model zoo [24]. We explore the value of initial-
izing our ResNet18 with pretrained ImageNet [8] weights.

As shown by Figure 6, initializing with pretrained Im-
ageNet weights improves the performance of our model.
Since ImageNet is a large dataset with a large number
of classes, the weights contain features that can be trans-
ferrable to a wide variety of tasks. The baseline has very low
precision and outstandingly high recall, which means that
the model returns many results, but most are incorrect [25].
On the other hand, initializing with the pretrained model has
a more balanced precision and recall, causing it to have a
higher F1 score. So, we initialize with ImageNet pretrained
weights for the rest of the experiments, as it results in a less
biased model.

Now, we compare the baseline performance of the model
along with class weights, undersampling and oversam-
pling, DCGAN, as well as weighted cDCGAN with α =

Precision Recall/ Specificity F1
Sensitivity

Baseline 0.543 0.927 0.780 0.685
Pretrained 0.730 0.842 0.850 0.782

Figure 7. Comparison of test evaluation metrics for baseline
ResNet18 and baseline model pretrained on ImageNet.

Precision Recall/ Specificity F1
Sensitivity

Baseline 0.730 0.842 0.850 0.782
Class
Weights 0.859 0.855 0.915 0.857

Under-
sam-
pling

0.709 0.865 0.843 0.779

Over-
sam-
pling

0.863 0.845 0.917 0.854

DCGAN 0.821 0.910 0.898 0.863
cDCGAN
α =
0.50

0.893 0.857 0.934 0.874

cDCGAN
α =
0.25

0.710 0.706 0.949 0.803

cDCGAN
α =
0.75

0.821 0.901 0.898 0.859

Figure 8. Comparison of baseline ResNet18 with class weights,
undersampling, oversampling, DCGAN, as well as cDCGAN
methods. Note that the data augmentation scheme detailed in Sec-
tion 3 of this paper was utilized for all of these methods.

0.25, 0.5, 0.75 in Figure 8.
Based on the results, we conclude that GAN-based ap-

proaches are a valid way to oversample an imbalanced train-
ing dataset. DCGAN and the cDCGAN variants were all
able to outperform the baseline in almost all metrics. In
particular, both our DCGAN and cDCGAN (α = 0.5) ap-
proaches outperform class weights, oversampling, and un-
dersampling (the most commonly used methods) in terms
of F1 score.

Our cDCGAN with α = 0.5 achieves the highest F1
score out of all the methods, although by a very narrow mar-
gin. Interestingly, using α = 0.25 slightly improves speci-
ficity at the cost of precision and recall/sensitivity, while
using α = 0.75 slightly improves sensitivity at the cost
of precision and specificity. This means that this hyper-
parameter can be tweaked according to the specific task at
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hand. Another observation of note is the fact that the cD-
CGAN with α = 0.75 seems to have very similar metrics
to the DCGAN, suggesting that generating labels accord-
ing to the true distribution of classes essentially negates the
conditional nature of the model.

Interestingly, DCGAN achieves the highest sensitivity
and cDCGAN (α = 0.5) achieves the highest specificity
out of all methods. This means that the dataset oversampled
with DCGAN will produce much less false negative results,
and one with cDCGAN will produce much less false posi-
tive results, making DCGAN more desirable if we want to
rule out disease, and cDCGAN more desirable if we want
to rule in disease. This unveils the possibility of using both
DCGAN and cDCGAN in conjunction to create an even
better dataset, a possible future path to explore.

One important note is the stochastic nature of model
training. Due to time constraints, models were only trained
once and results recorded. Despite random seeding and us-
ing the same ImageNet weight initialization for all the mod-
els, due to the narrow margins between each method, there
exists the possibility that these results occurred purely by
chance.

5.3. Visualization

Zhou et al proposed Class Activation Maps [34] as a way
to visualize where and with what intensity a CNN model
is looking at an image, but it trades off model complex-
ity and performance. Grad-CAM [28], on the other hand,
does not modify the network and uses the gradients flow-
ing into the final convolutional layer in order to produce a
map that localizes and highlights important regions in the
image indicative of a certain class. This is especially im-
portant and useful in the medical field. Firstly, it can be
used as a gauge of model relevance. If the Grad-CAM indi-
cates that the model is looking at somewhere other than the
lung cavity to make predictions, we know that the model is
not a valid predictor of pneumonia. Secondly, using Grad-
CAM can be helpful to help doctors localize the disease.
Since Grad-CAMs highlight specific regions of an image,
an experienced radiologist can then easily confirm these lo-
cations. This increased model transparency and explainabil-
ity thus makes Grad-CAM a great way to gauge the quality
of our different oversampled datasets.

We generated Grad-CAM images using [10] for the base-
line, DCGAN, and cDCGAN(α = 0.5) methods, using the
highest-scoring category to generate each image.

Upon examination of the class activation maps, we can
see that the DCGAN is definitely learning irrelevant fea-
tures. In particular, the splotches on the left and right of
the chest x-ray is indicative that it is not actually looking at
the lungs, where pneumonia is found. The baseline method
faces a similar problem, with the model commonly look-
ing at the abdomen instead of the lungs. cDCGAN does a

(a) Grad-CAMs generated for a random test
batch for the baseline method.

(b) Grad-CAMs generated for a random test
batch for DCGAN method.

(c) Grad-CAMs generated for a random test
batch for cDCGAN (α = 0.5) method.

bit better in this respect, as the highlighted portions of the
Grad-CAM tends to be more varied and generally lie in the
chest cavity.
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6. Conclusion
In this work, we explored the usage of Deep Con-

volutional Generative Adversarial Networks (DCGANs)
and conditional Deep Convolutional Generative Adversar-
ial Networks (cDCGANs) for oversampling of the minority
class in imbalanced medical image datasets. Furthermore,
we proposed a new α hyperparameter for cDCGANs that
can potentially be used to tune the sensitivity and specificity
of the model.

We found that we found that our DCGAN and cCDGAN
based approaches outperform standard approaches in terms
of F1 score, despite potentially underperforming in other
metrics. However, despite DCGAN performing well in met-
rics, we note that the Grad-CAMs generated indicate that
the ResNet-18 model is not learning relevant features for
pneumonia diagnosis. The dataset oversampled with cDC-
GAN does not face this issue as much, which we attribute to
more realistically generated images as a result of the condi-
tional component of the network. Nevertheless, we believe
that our approach has the potential to become a reliable way
to oversample an imbalanced image dataset.

In the future, we would like to tune the GAN models
more carefully, and train models multiple times to compen-
sate for the stochastic nature of model training. The bad
Grad-CAMs could likely be the result of a bad dataset, so
curating a more diverse imbalanced dataset should also be
a future step. We may offer our GAN-generated images to
an actual experienced radiologist for review for usefulness,
relevance, and realisticness, resulting in a better annotated
dataset. More time and computational power may admit the
ability to test out and compare our results to some other ap-
proaches highlighted in the related work section, including
BAGAN [22], as well as cost sensitive learning [18], ac-
tive learning [9], and LDAM [5]. We also want to explore
how well our model architecture transfers to other medical
image datasets. The methods in this paper may prove use-
ful for other cancers like skin cancer, as well as any image
dataset in general.

7. Group Member Contributions
7.1. Adam Sun

Idea for project. Performed literature review on differ-
ent GAN models and techniques dealing with imbalanced
dataset. Wrote code to load data and create imbalanced
dataset. Implemented ResNet18 in PyTorch, implemented
code for loading data and training Resnet18 model. Im-
plemented, experimented, and trained all GAN models on
Amazon Web Services (AWS), and ran experiments com-
paring Resnet18 performance on each GAN-oversampled
dataset. Used grad-CAM package to generate heatmaps.
Scribe for milestone and final report, especially the Meth-
ods and Experiments sections.

7.2. Kevin Li

Idea for project. Reviewed papers and verified under-
standing of concepts. Implemented code for preprocessing
and managing dataset for creating imbalance. Ran early
tests on ResNet50 that were overfitting. Ran baseline and
basic (non-GAN) tests. Implemented code, ran all exper-
iments and compiled all results for CS229 portion of the
project, and incorporated results into the CS231N paper for
comparison. Scribe and reviewer for milestone and final re-
port, in particular contributed to the math-heavy portions of
the report, managing citations, LATEX typesetting, and gen-
eral formatting. Poster developer and printer.

7.3. CS229 Overlap

The CS229 portion of the project, which is being com-
pleted by the second author of this paper, Kevin Li, and
Taran Kota (tkota@stanford.edu), examines more
classical methods for resolving data imbalance, including
methods mentioned before, like oversampling, undersam-
pling, standard image data augmentation involving flipping,
rotating, and cropping images, class weights, and SMOTE-
like methods: SMOTE, BorderlineSMOTE, and ADASYN.
All of this is done without the use of pre-learned model
weights. Certain methods like undersampling, oversam-
pling, data augmentation, and class weights are done in
the CS231N portion of the project but with pre-learned
weights from ImageNet, and the GAN work is unique to
the CS231N portion. Taran’s work does not overlap with
any work or research presented in this paper at all.

7.4. Additional Acknowledgements

For the ResNet18 model, we built off of the code base
[30]. The DCGAN code was based off of [2], and the cD-
CGAN code was inspired by [4]. We also acknowledge
the wonderful open-source PyTorch library [24], Tensor-
flow [1], Keras [6], and other libraries like NumPy [13] (for
managing data), Scikit-Learn [25] (for computing metrics),
Matplotlib [16] (for plotting and visualizing images), and
Jacob Gildenblat’s Pytorch Library for CAM methods [10]
(for class activation maps).
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and Aitor Gutierrez. A survey on generative adversarial

9

https://www.kaggle.com/code/djibybalde/dcgan-keras-chest-x-ray-images
https://www.kaggle.com/code/djibybalde/dcgan-keras-chest-x-ray-images
https://www.kaggle.com/code/djibybalde/dcgan-keras-chest-x-ray-images
https://machinelearningmastery.com/how-to-develop-a-conditional-generative-adversarial-network-from-scratch/
https://machinelearningmastery.com/how-to-develop-a-conditional-generative-adversarial-network-from-scratch/
https://machinelearningmastery.com/how-to-develop-a-conditional-generative-adversarial-network-from-scratch/
https://machinelearningmastery.com/how-to-develop-a-conditional-generative-adversarial-network-from-scratch/
https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam


networks for imbalance problems in computer vision tasks.
Journal of Big Data, 8(1), Jan. 2021. 2, 3

[28] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna
Vedantam, Michael Cogswell, Devi Parikh, and Dhruv Ba-
tra. Grad-cam: Why did you say that? visual explanations
from deep networks via gradient-based localization. CoRR,
abs/1610.02391, 2016. 7

[29] Connor Shorten and Taghi M. Khoshgoftaar. A survey on
image data augmentation for deep learning. In Journal of
Big Data, volume 6. Springer Nature, 2019. 1, 2

[30] Gaurav Singhal. Transfer learning with resnet in py-
torch. https://www.pluralsight.com/guides/
introduction-to-resnet, 2020. 3, 5, 8

[31] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mo-
hammadhadi Bagheri, and Ronald M. Summers. Chestx-
ray8: Hospital-scale chest x-ray database and benchmarks
on weakly-supervised classification and localization of com-
mon thorax diseases. CoRR, abs/1705.02315, 2017. 3

[32] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and
Kalyan Veeramachaneni. Modeling tabular data using con-
ditional gan. In H. Wallach, H. Larochelle, A. Beygelzimer,
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